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STABILITY CHARACTERISTICS OF SLENDER
FLEXIBLE CYLINDERS IN AXIAL FLOW BY THE
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The dynamics of flexible slender circular cylinders in axial flow having regard to their
fluidelastic instability characteristics is an extensively studied problem in the literature. A
finite element formulation of the problem is presented in this paper. The formulation has
been validated with the analytical results of supported cylinders available in the literature.
Additional numerical examples are presented for which analytical methods are difficult to
formulate and do not exist in the literature, in order to bring out the breadth of application
of the finite element method.
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1. INTRODUCTION

The dynamics of flexible circular cylinders in axial flow has been studied extensively
because such structures find use in many engineering applications [1, 2]. This class of
problems exhibit fluidelastic instabilities of divergence and flutter. Though the mechanics
of these problems is strongly non-linear both in hydrodynamic and structural dynamic
aspects, these instabilities about any equilibrium position can be identified using linear
approximation. The theoretical study of flexible cylinders in axial flow, in recent times,
started in connection with the design of nuclear reactor cores to understand the dynamic
behaviour of fuel rod bundles. Later it found important application in towing of cylindrical
objects by ship for sonar as well as seismic applications.

Numerical modelling of this class of problems by the finite element method is attempted
in this paper, presumably for the first time. This will enhance the capability to model real
life structures which are not uniform in their geometry, inertial properties, stiffness as well
as hydrodynamic properties over their lengths. Constant values of these properties are
assumed in all available analytical methods. The finite element method can also treat
practical structures consisting of multispan cylinders which are difficult to treat by
analytical methods and therefore never attempted in the literature. The numerical results
presented are firstly concerned with the validation of the finite element method using some
of the examples documented in the literature and secondly with a few cases for which
analytical solutions either do not exist or are difficult to obtain.

The fundamental formulation of the differential equation governing the dynamics of
flexible slender cylinders under external axial flow, with several special effects included, is
presented in references [3, 4]. Some later papers in this area [5–7] deal with various
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specialised aspects and approximations of the problem. In all these studies, the basic
hydrodynamic models used had been based on the fundamental work reported in
references [8, 9].

2. GOVERNING EQUATION

The differential equation governing small lateral motion of a uniform, flexible, slender
circular cylinder in uniform axial flow (see Figure 1) can be written as [3, 4]

mIV� 2+EIV2+(m+M)V� +MU2V''+ [(a1 x− a2)V''+ a1 V']

+2MUV� '+ a3 V'+ a4 V� =0, (1)

where

M= krA, a1 = 1
2 cT (MU2/D) (1+D/Dh )+ (m− rA)g, a2 = a1 e1 + e2,

a3 = b1 − a1,

e1 = (1− l/2)L, e2 = lT0 + 1
2 (1− l)cb MU2 + l(1−2n) (p̄A�),

b1 = 1
2 cN (MU2/D) (1+D/Dh )+ (m− rA)g, a4 = 1

2 cN MU/D+ 1
2 cD M/D. (2)

In the above, a (·) indicates derivative with respect to time t and (') indicates derivative
with respect to x. The upstream and the downstream ends of the cylinder coincide with
x=0 and x=L respectively, where boundary conditions may be specified. The various
symbols used above are: m (viscoelastic damping coefficient of cylinder material), E
(Young’s modulus of the cylinder material), I (moment of inertia of the cylinder
cross-section about the centroidal axis), m (mass per unit length of the cylinder), A
(cross-sectional area of the cylinder), M (added mass per unit length of the cylinder), k

(coefficient of added mass), D (outer diameter of the cylinder), Dh (hydraulic diameter,
=4Ach /Stot ), Ach (channel flow area when a cluster of cylinders are placed in a channel as
in Figure 2a), Stot (total surface area of channel per unit length), L (length of the cylinder),
U (constant flow velocity along the cylinder axis), r (fluid density), cN (coefficient of normal
drag), cT (coefficient of tangential drag), cD (drag coefficient when cylinder is normal to
the flow direction), T (tension on the cylinder), cb (base drag coefficient at the downstream
end), g (acceleration due to gravity), p (steady state pressure on the cylinder) and p̄A�
(equals pA at x=L/2). The small transverse (y direction) displacement of the cylinder
cross-section is denoted V(x, t). The cylinder motion is therefore restricted to the xy-plane.
The value of l is 1 if the downstream end is supported and 0 if free.

Consider equation (1) with k=1 and h=D/Dh =0. This models a single flexible
cylinder in laterally unconfined flow. In nuclear fuel bundles, several cylinders are kept
close to one another and the entire system is put in a concentric cylindrical flow channel
through which flow occurs (see Figure 2). When the stability of a single cylinder in this
bundle (cluster) is considered, the added (or hydrodynamic) mass M for this cylinder is

Figure 1. Boundary conditions of cylinders in axial flow: (a) pinned–pinned; (b) clamped–clamped.



(a) U

g

(b)

U

p
y

x

   589

Figure 2. Some additional effects of cylinders in axial flow: (a) Cylinder bundle in axial flow; (b) a cylinder
subjected to external pressure.

modified by the coefficient k. Therefore kq 1 represents the case of a single cylinder in
a cluster (or bundle) in a confined lateral flow. The effect of lateral confinement is brought
out by the finite area of the channel cross-section (Ach ) which otherwise is infinite i.e., the
cylinder is in an unbounded fluid domain. In nuclear reactor channels and heat exchangers,
the bundles are arranged in a vertical direction and hence the self weight effect becomes
important and it is given by the second term in the expression for a1. The lateral forces
arising from the mean pressure p of the fluid is given by the third term in the expression
for e2. The frictional forces in the axial and transverse directions of the cylinder are given
by the term a4. In reference [4] as well as in most calculations reported in the literature,
it is assumed that cN = cT = cf , though cN and cT can be different.

It should be noted that equation (1) sets out the problem within the frame work of small
amplitude motions (i.e., linear behavior) of the cylinder modelled by elementary
(Euler–Bernoulli) beam theory, linearised hydrodynamic force models based on cross-flow
principle and a uniform virtual mass of the fluid over the entire length of the cylinder. This
theory is valid only when the wave length of vibration of the cylinder is sufficiently large
(at least five times) in comparison to the cylinder diameter which allows the ‘‘slender body
approximation’’ in the hydrodynamic models. The theory, therefore, rests on twin
limitations of linearity in structural behaviour and ‘‘slender body approximation’’ in
hydrodynamic behaviour. The fluid effects are accounted for in the structural dynamic
equations using certain gross empirical representations, without carrying out any fluid
dynamic analysis. This is thus an interaction problem in essence and not in form, and the
governing equation of motion is therefore a single equation involving the lateral
displacement of the cylinder as the variable.

3. VARIATIONAL FORMULATION

In this section the problem is reduced to a variational form so that finite element
approximation can directly follow from it. The solution of equation (1) is assumed in the
form

V(x, t)= v(x) eivt, (i=z−1), (3)

where v is the circular natural frequency of the cylinder. Using equation (3) in equation
(1) gives

E*Iv2−v2(m+M)v+MU2v0+[(a1 x− a2)v0+ a1 v']+2ivMUv'+ a3 v'+ a4 ivv=0,

(4)



. .   .590

where

E*=E+ivm. (5)

Multiplying the above equation by a variation dv and integrating over zero to l by parts,
(where l is the length of the beam finite element) integration of various term are carried
out as follows: first term (by parts integration twice):

E*I g
l

0

(v0)0dv dx=E*I6[(v0)'dv− v0dv'] b
l

0

+ d$g
l

0

1
2 v02 dx%7; (5a)

Second term:

v2(m+M) g
l

0

vdv dx=v2(m+M)d$1
2 g

l

0

v2 dx%; (5b)

Third term:

MU2 g
l

0

v0dv dx=MU26[v'dv] b
l

0

− d$1
2 g

l

0

v'2 dx%7; (5c)

Fourth term:

g
l

0

(a1 x− a2)v0dv dx+ a1 g
l

0

v'dv dx=[(a1 x− a2)v'dv] b
l

0

− d$1
2 g

l

0

(a1 x− a2)v'2 dx%. (5d)

The fifth and sixth terms yield

2MUiv g
l

0

v'dv dx, a3 g
l

0

v'dv dx, (5e)

respectively, which remain unaffected.
Seventh term:

iva4 g
l

0

vdv dx=iva4 d$1
2 g

l

0

v2 dx%. (5f)

Using equations (5a–f) in equation (4), one obtains the corresponding variational problem
as

d g
l

0

[1
2 E*Iv02 − 1

2 v2(m+M)v2 − 1
2 MU2v'2 − 1

2 (a1 x− a2)v'2 + 1
2 iva4 v2] dx

+(2MUiv+ a3) g
l

0

v'dv dx=0, (6)

and the corresponding boundary conditions are

v= v0 or E*Iv1+(MU2 + a1 x− a2)v'=0 (at x=0, 1) (7)

v'=0 or E*Iv0=0 (at x=0, 1) (8)
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4. FINITE ELEMENT APPROXIMATION

The finite element chosen here is the well known two-noded straight uniform beam
element with two bending degrees of freedom in the xy-plane at each node. The beam
element is shown in Figure 3, and the relevant displacement field and the shape functions
are given by [10]:

v(x, t)= s
4

i=1

Ni (x)ui (t). (9)

N1 =1−3s̄2 +2s̄3; N2 = (s̄−2s̄2 + s̄3)l; N3 =3s̄2 −2s̄3;

N4 = (−s̄2 + s̄3)l; s̄= x/l (10)

where Nj are the standard beam shape functions and uj are the element degrees of freedom.
Using equation (10) in equation (6), one obtains

$E*I g
l

0

N0j N0i dx%uj dui −$v2(m+M) g
l

0

Nj Ni dx%uj dui

−$MU2 g
l

0

N'j N'i dx%uj dui −$g
l

0

(a1 x− a2)N'j N'i dx%uj dui

−$iva4 g
l

0

Nj Ni dx%uj dui +$(2MUiv+ a3) g
l

0

N'j Ni dx%uj dui =0. (11)

Noting that dui is arbitrary, this equation reduces to the form

[−v2[me ]+ iv[ce ]+ [ke ]]{uj}= {0}, ( j=1, 2, 3, 4), (12)

where

[me ]= s
2

j=1

m( j), [ce ]= s
3

j=1

c( j), [ke ]= s
4

j=1

k( j), m(1)
ij =m g

l

0

Ni Nj dx,

m(2)
ij =M g

l

0

Ni Nj dx, c(1)
ij =2MU g

l

0

N'j Ni dx, c(2)
ij = a4 g

l

0

Ni Nj dx,

c(3)
ij = mI g

l

0

N0i N0j dx, k(1)
ij =EI g

l

0

N0i N0j dx, k(2)
ij =−MU2 g

l

0

N'i N'j dx,

Figure 3. Two dimensional beam element.
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k(3)
ij =−g

l

0

(a1 x− a2)N'i N'j dx, k(4)
ij = a3 g

l

0

N'j Ni dx. (13)

The matrices [me ], [ce ] and [ke ] are the element mass, damping and stiffness matrices
respectively. Carrying out the usual finite element transformation and assembly, equation
(12) results in

[−v2[m]+ iv[c]+ [k]]{u}= {0} (14)

where [m], [c] and [k] are the global mass, damping and stiffness matrices and {u} is the
vector of all degrees of freedom in the structure. For the non-trivial solution of equation
(14)

det[−v2mij +ivcij + kij ]=0 (15)

which is the complex algebraic eigenvalue problem in v. In the foregoing, it may be noted
that the matrices c(1) and k(4) are skew symmetric (with c(1)

ij =−c(1)
ji , k(4)

ij =−k(4)
ji for i$ j)

since they result from ‘‘work done’’ types of expression not having a variational form. As
a result [c] and [k] matrices are unsymmetric. It can be readily verified that if v is a root
of equation (15), v* is also a root (asterisk denotes complex conjugate).

The two boundary conditions used in this study (with upstream end at x=0 and
downstream end at x=L) are v= v0=0 at x=0, L (pinned–pinned, denoted hereafter
as p–p) and v= v'=0 at x=0, L (clamped–clamped, denoted hereafter as c–c). At this
stage the various non-dimensional parameters are listed below which have been used in
the literature to present numerical results. These are:

o=L/D, V=[M/(EI)]1/2vL2, u=[M/(EI)]1/2UL, b=M/(m+M),

t=[EI/(m+M)]1/2t/L2, G=T0 L2/(EI), g=(m−M)gL3/(EI),

P=(pA)L2/(EI) a=[I/{E(m+M)}]1/2m/L2, c= cD [M/(EI)]1/2. (16)

5. ANALYTICAL METHODS

The analytical methods used in the literature are revisited here in order to study the
accuracy and convergence of finite element calculations. This is because one needs accurate
results based on analytical methods for comparison whereas almost all the results in the
literature are in graphical form. In reassessing the analytical methods, certain minor
discrepancies were found which also need to be pointed out. In the literature, two methods
are used to solve for system frequencies, namely, beam eigenfunction expansion method
(BEEM) and power series method (PSM). The BEEM has been used for p–p and c–c
cylinders in axial flow and PSM has been used for clamped–free cylinders in axial flow
[3]. The order of the determinantal equation defining the eigenvalue problem by BEEM
equals the number of eigenfunctions used whereas in PSM it can be reduced to 2. PSM
has not been used in p–p and c–c cases in axial flow for unknown reason, i.e., no reason
was found in the literature. Since PSM is a powerful method and shorn of the
complications of the various beam eigenfunctions, their characteristic equations and closed
form evaluation of various integrals required for expansion coefficients and is similar in
approach for all boundary conditions, the details of PSM for p–p and c–c boundary
conditions are provided in the Appendix A.
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T 1

Frequency comparison for single cylinders (p–p and c–c)

Frequency (V)
ZXXXXXXXXXCXXXXXXXXXV

Flow velocity (u) Analytical Finite element

(a) c–c cylinder with b=0·1, ocf =1 (Fig. 4 of Ref. [3])
2 21·1807+ i0·1572 21·1808+ i0·1572

60·1897+ i0·1582 60·1923+ i0·1582
119·3000+ i0·1582 119·3219+ i0·1582

4 17·1274+ i0·3079 17·1277+ i0·3079
55·5338+ i0·3182 55·5368+ i0·3182

114·3827+ i0·3174 114·4030+ i0·3174
6 6·3510+ i0·4371 6·3522+ i0·4371

46·8757+ i0·4879 46·8799+ i0·4879
105·7249− i0·4796 105·7482− i0·4796

(b) p–p cylinder with b=0·1, ocf =1 (Fig. 3 of Ref. [4])
2 7·5733+ i0·1567 7·5733+ i0·1567

37·4675+ i0·1584 37·4683+ i0·1584
86·8639+ i0·1583 86·8716+ i0·1583

3 2·8316+ i0·2321 2·8316+ i0·2321
34·8037+ i0·2387 34·8045+ i0·2387
84·3520+ i0·2380 84·3600+ i0·2380

8 5·0754+ i25·7928 5·0755+ i25·7928
4·6215− i24·6454 4·6215− i24·6454

49·0626+ i0·6870 49·0780+ i0·6870

6. RESULTS AND DISCUSSIONS

Finite element calculations have been carried out for a few example problems, the results
of which are available in the literature using analytical methods. These are either presented
in the form of Argand diagrams of the complex dimensionless frequencies (V) as a function
of dimensionless flow velocity (u) or directly by the critical flow velocities for buckling (ub )
and flutter (uc0). For comparison, these graphical results are not good enough and therefore
they have been worked out by an analytical method using PSM as discussed in Appendix
A. The critical flow velocities can however be directly compared. For one typical problem,
a convergence study of the finite element solution for typical flow velocities is reported.
A few examples demonstrating the inclusion of intermediate supports (i.e., multispan
cylinders), stepped cylinders and the effect of point mass on stability are also presented
for which analytical solutions are not possible. The complex eigenvalues from equation
(15) have been obtained by a determinant search procedure.

6.1.     

Two examples of single cylinders, one for c–c and the other for p–p boundary conditions,
are worked out from reference [3] and the first three V values are compared for a few
values of u in Table 1(a and b). The results presented in reference [3] for the c–c
boundary condition have been found to be wrong due to an error in one of the
eigenfunction expansion coefficients. The coefficient should be given by
crr = lr sr (2− lr sr ) instead of crr = lr sr (4− lrsr ) as given in Table 1 of this reference.
Hence the corrected results for this case in the context of the formulation used in reference
[3] are given in the form of an Argand diagram in Figure 4. From Table 1, it can be seen
that the comparison of frequencies between finite element and analytical results is virtually
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Figure 4. Complex frequency diagram of the lowest three modes of a clamped–clamped cylinder in axial flow
for b=0·1, ocN = ocT =1, ub1 =6·29, uc0 =7·80, 11·0. (S, stable, and U, unstable regions). Key: —r—, first
mode; —+—, second mode; —×—, third mode.

exact leaving very little to discuss. Similar comparisons have been achieved in all the cases
which follow.

6.2.      

The stability of a p–p and a c-c cylinder in a bundle of cylinders was studied in reference
[4] and results were reported in the form of complex frequency diagrams. The u–V

comparison for the p–p case is presented in Table 2. The critical flow velocities for buckling
and flutter for both the cases are compared in Table 4. The results show that instability
occurs at much lower flow velocity (ub1 =1·572 for p–p and ub1 =3·142 for c–c) in their
fundamental mode. For a c–c cylinder, the critical flow velocity for second mode buckling
(ub2) was absent.

T 2

Frequency comparison for p–p cylinder in a cluster
b=0·1, ocf =0·25, h=1·5, k=4 (Fig. 5 of Ref. [4])

Frequency (V)
ZXXXXXXXXXCXXXXXXXXXV

Flow velocity (u) Analytical Finite element

0 8·6523+ i0·0 8·6562+ i0·0
34·6248+ i0·0 34·6247+ i0·0
77·9059+ i0·0 77·9075+ i0·0

1 6·5892+ i0·01546 6·5892+ i0·01542
32·9382+ i0·01530 32·9389+ i0·01531
76·2950+ i0·01526 76·3019+ i0·01524

1·75 0·0+ i4·0817 0·0+ i4·0817
0·0− i4·0322 0·0− i4·0323

29·2217+ i0·02737 29·2217+ i0·02732
72·8904+ i0·02699 72·8904+ i0·02695
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T 3

Frequency comparison for a p–p cylinder with external tension
b=0·1, ocf =0·25, G=10 (Table 4 of Ref. [4])

Frequency (V)
ZXXXXXXXXXCXXXXXXXXXV

Flow velocity (u) Analytical Finite element

2 12·4711+ i0·0393 12·4701+ i0·0393
42·3988+ i0·0396 42·3994+ i0·0396
91·8296+ i0·0396 91·8368+ i0·0396

4 6·0688+ i0·0763 6·0668+ i0·0763
36·5375+ i0·0798 36·5383+ i0·0798
86·0277+ i0·0795 86·0307+ i0·0795

7 0·0+ i13·2720 0·0+ i13·2729
0·0− i13·1529 0·0− i13·1538

5·4637+ i0·2037 5·4702+ i0·2030
67·7228+ i0·1430 67·7338+ i0·1431

6.3.     

The u–V comparison for a p–p cylinder under uniform tension applied externally at the
downstream end is given in Table 3. The effect of this parameter (G) is to increase the real
part of frequency which tends to stabilise the system.

6.4.       

The effect of surface roughness on the cylinder and pressure drag coefficient is accounted
for by the parameters ocf and oc in equation (2). Table 4 presents the comparison of critical
flow velocities for buckling and flutter for a p–p and a c–c cylinder. It is seen from the
results that the variations in critical flow velocities are almost nil when compared to the
standard case given in the same Table.

T 4

Effect of different parameters on stability by analytical and finite element methods

Pinned–pinned Clamped–clamped
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

S. No. Parameter ub1 ub2 uc0 ub1 ub2 uc0

1 Standard case† 3·143 6·28 6·41 6·29 8·99 9·02
(3·143)‡ (6·28) (6·41) (6·29) (8·99) (9·02)

2 a=0·003 3·143 6·28 6·52 6·29 9·01 9·20
(3·143) (6·28) (6·56) (6·28) (8·99) (9·21)

3 g=10 3·108 6·30 6·44 6·28 8·99 9·02
(3·108) (6·31) (6·44) (6·28) (8·99) (9·02)

4 P=5, 3·445 6·44 6·55 6·44 9·10 9·12
n=0·3 (3·445) (6·44) (6·55) (6·44) (9·05) (9·11)

5 D/Dh = h=1·5 1·572 3·142 3·143 3·142 – 4·50
k=4 (1·572) (3·142) (3·143) (3·142) – (4·51)

6 ocf =1 3·137 6·31 6·48 6·28 8·98 9·10
(3·137) (6·31) (6·48) (6·28) (8·98) (9·10)

7 oc=0·25 3·143 6·28 6·41 6·29 8·99 9·02
(3·143) (6·28) (6·41) (6·29) (8·99) (9·05)

8 l=0 3·246 6·49 6·60 6·49 9·28 9·30
(3·246) (6·49) (6·60) (6·49) (9·28) (9·30)

†Standard case here refers to b=0·1, ocf = 0·25, l= k=1 [4].
‡Finite element results are given in parenthesis.
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6.5.       

In reference [4] the Kelvin–Voigt model has been used to represent the internal
dissipative forces of cylinder by the parameter a. The effect of this parameter on critical
flow velocity (both by analytical and finite element methods) is presented in Table 4 which
shows that the critical flow velocity for flutter increases nearly by 2% in both p–p and c–c
cases.

6.6.    

The critical flow velocities for buckling and flutter have been obtained by including the
effect of gravity parameter (g), which is relevant when the cylinder is kept in the vertical
configuration. The comparison is shown in Table 4. The c–c cylinder does not show any
change in critical flow velocity but the p–p cylinder shows a marginal change in its
fundamental mode of buckling.

6.7.    

The critical flow velocities are compared for both p–p and c–c cases in Table 4 when
the cylinder is externally pressurised by a value given by P (also see Figure 2b). It can
be seen that the critical flow velocity for buckling in fundamental mode has increased by
9% and 3% respectively for these boundary conditions.

6.8.    

The lowest three non-dimensional complex eigenfrequencies as a function of flow
velocity of a uniform circular cylinder for b=0·1 and ocf =1 with two and three spans
are traced as Argand diagrams in Figures 5 and 6 respectively. The critical flow velocity
values are presented in Table 5. It is seen from Figure 5 that the loci of the first mode
bifurcate on the Im (V) axis and with increase of flow velocity the fundamental mode
crosses the origin at a critical flow velocity ub1 =6·26, which is the threshold of buckling
instability. As the flow velocity is further increased, the cylinder undergoes buckling
instability again at critical flow velocities ub2 =9·17 and ub3 =12·43 in second and third
modes respectively. For a marginal increase in flow velocity, the dynamic instability occurs
as a coupled mode flutter at uc0 =12·59. It is clearly seen from Figure 6 that with an

Figure 5. Complex frequency diagram of the lowest three modes of a two span cylinder in axial flow for b=0·1,
ocf =1, l= k=1. Key: —y—, first mode; —+—, second mode; —×—, third mode.
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Figure 6. Complex frequency diagram of the lowest three modes of a three span cylinder in axial flow for
b=0·1, ocf =1, l= k=1. Key as for Figure 5.

T 5

Effect of intermediate supports on stability

S. No. Configuration ub1 ub2 uc0 ub3

b=0·1, ocf =1, p–p

1 1 span; (L); (p–p) 3·137 6·31 6·48 9·46
2 2 spans; (2L/3, L/3); (p–p–p) 6·265 9·17 12·59 12·43
3 3 spans; (L/3, L/3, L/3); (p–p–p–p) 8·540 12·29 14·60 15·29

b=0·1, ocf =1, c–c

1 1 span; (L); (c–c) 6·280 8·98 9·10 12·59
2 2 spans; (L/2, L/2); (c–p–c) 8·950 12·59 18·20 15·45
3 3 spans; (L/4, L/4, L/2); (c–p–p–c) 9·880 14·29 14·46 18·47

increase in the number of spans, the critical flow velocity also increases and in this case
the coupled mode flutter occurs at uc0 =14·6 prior to third mode buckling. The
fundamental mode of buckling of a two span cylinder occurs at a critical flow velocity
which is 100% more than the corresponding single span case for p–p cylinder and 43%
more for c–c cylinder. The corresponding values for a three span cylinder are 172% and
57% respectively.

6.9.    

Here a few examples of stepped circular cylinders in uniform axial flow have been
examined under the basic assumption that the joints between each segments are smooth
so that there is no flow separation at the joints. The dimensional critical flow velocities
for the lowest three modes are presented in Table 6. It is seen that for a single stepped
cylinder the critical flow velocity for flutter increases from 6·48 m/s to 7·04 m/s, in spite
of the fact that the critical flow velocity for buckling has decreased from 3·137 m/s to
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T 6

Stability of stepped cylinders (b=0·1, ocf =1, l= k=1)

S. No. ocf Configurations Ub1 (m/s) Ub2 (m/s) Uc0 (m/s)

1 (a) 1 No step; (L, D) 3·137 6·31 6·48
(b) 0·25 3·143 6·28 6·41

2 (a) 1 1 step, (3L/4, D) 2·250 4·43 7·04
(b) 0·25 and (L/4, D/2) 2·480 4·38 8·09

3 (a) 1 2 steps, (3L/5, D), 1·120 3·08 4·48
(b) 0·25 (L/5, D/2) and (L/5, D/4) 1·185 3·57 5·30

Note: L=1 m, D=0·05 m, E=6·4E+06 N/m2.

T 7

Effect of point mass on critical flow velocities at midspan of a p–p cylinder (b=0·1, ocf =1,
k=1)

Point mass
(% of mL) ub1 ub2 uc0 ub3

0 3·14 6·31 6·47 9·46
25 3·14 6·31 6·47 9·46
50 3·14 6·31 6·47 9·46
75 3·14 6·31 6·48 9·46

100 3·14 6·31 6·60 9·46

2·25 m/s (less by 28%). For the case of two-stepped cylinder, the lowest critical flow
velocity is Ub1 =1·12 m/s.

6.10.    

A case of point mass at the mid-span of a simply supported cylinder in axial flow
with b=0·1, ocf =1 was considered. The critical flow velocities are presented in
Table 7. It can be seen that the critical flow velocity for buckling (ub ) remains
independent of the magnitude of this mass and the critical flow velocity for flutter (uc0)
increases marginally from a value of 6·47 to 6·6 for a point mass equal to 100% of
structural mass.

6.11.  

The convergence results are presented for only one typical case in Table 8. This and
many other studies which have been made [2] yield the following conclusions:

(a) For lower flow velocities, 10 elements are required for accurate results.
(b) For higher flow velocities and for higher modes of practical interest, 16 elements

are required.
(c) A two- to four-element model gives reasonably good results for the first two

modes.
(d) More elements are required for the c–c case than for other boundary conditions.

In other words, a four-element model can be used for the first two roots, a 10-element
model for all roots at lower flow velocities and a 16-element model for all situations that
could be of practical interest.
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T 8

Convergence study of finite element solution for a c–c cylinder (b=0·1, ocf =1)

Frequency (V)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Method u=2 u=4

ANL† 21·1807+ i0·1572 17·1274+ i0·3079
60·1897+ i0·1582 55·5338+ i0·3182

119·3100+ i0·1582 114·3827+ i0·3174
FE (2)‡ 21·5361+ i0·1576 17·4903+ i0·3121

80·7184+ i0·1585 76·8141+ i0·3203
FE (4) 21·2134+ i0·1572 17·1812+ i0·3081

60·7759+ i0·1583 56·1797+ i0·3186
121·8981+ i0·1583 117·0189+ i0·3184

FE (8) 21·1828+ i0·1572 17·1311+ i0·3079
60·2303+ i0·1582 55·5805+ i0·3182

119·5953+ i0·1582 114·6945+ i0·3174
FE (16) 21·1808+ i0·1572 17·1277+ i0·3074

60·1923+ i0·1582 55·5368+ i0·3182
119·3219+ i0·1582 114·4030+ i0·3174

†ANL, Analytical.
‡FE, Finite element, number of elements are shown within parenthesis.

7. CONCLUSION

A finite element formulation of the problem of stability of flexible cylinders in axial flow
is presented in this work. The complex eigenfrequencies obtained have been validated for
a range of examples by comparing them with those obtained from analytical methods. The
analytical and finite element results (both eigenfrequencies and critical flow velocities) are
in excellent agreement in all cases including those with additional effects. The convergence
study indicated that a 16 element model for a cylinder could be used for all results
presented in the literature.

The efficacy of the finite element method has been demonstrated using some examples
for which analytical methods are either not available or cumbersome to apply. These
include two and three span cylinders, stepped cylinders and p–p cylinder with point mass
at mid span. The use of multiple supports for a cylinder in axial flow has been found to
increase the fundamental critical flow velocity for buckling. On the other hand, the critical
flow velocity for a stepped cylinder decreases with reduction in cross-section. The effect
of point mass as a percentage variation of structural mass at the midspan of a p–p cylinder
reveals firstly that the critical flow velocity for buckling is independent of the magnitude
of point mass, since it is a static phenomenon and secondly the critical flow velocity for
flutter has increased marginally by 2% for an increase in 100% of structural mass.

The finite element method reported in this work cannot treat the problem of towed–free
as well as cantilevered cylinders because in these cases the shape of the end (tapered or
blunt) plays a significant role in its stability characteristics. The end effects lead to certain
terms in the finite element equations as well as non-conservative follower forces, if any.
A more general variational framework based on Hamilton’s principle will be required to
develop the finite element approximation. The present method can however be readily
extended to forced excitation calculations using a direct integration approach. Non-linear
structural formulation, to date not studied in the context of the present problem in the
literature, can readily be incorporated in any direct integration scheme based upon updated
Lagrangian formulation.
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APPENDIX A: POWER SERIES METHOD

Adopting the notations of reference [3], the non-dimensional differential equation in
space cordinates j[Y=Y(j)] is written as

Y2+ aY0+ cY'+ eY=0(0Q jQ 1) (A1)

where a, b, c and e are constant coefficients and Y'=dY/dj etc. Boundary conditions are:

pinned–pinned, Y=Y0=0, at j=0, 1 (A2)

clamped–clamped, Y=Y'=0, at j=0, 1 (A3)

The solution of (1) is assumed as

Y(j)= s
a

n=0

An jn. (A4)

The various required derivatives are

Y'= s
a

n=0

nAn jn−1, Y0= s
a

n=0

n(n−1)An jn−2, Y1= s
a

n=0

n(n−1) (n−2)An jn−3.

(A5)

Use of equations (A2)–(A4) gives

pinned–pinned, A0 =A2 =A1 +A3 + s
a

n=4

An =6A3 + s
a

n=4

n(n−1)An =0, (A6)

clamped–clamped, A0 =A1 =A2 +A3 + s
a

n=4

An =2A2 +3A3 + s
a

n=4

nAn =0. (A7)
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Substituting equation (A4) into equation (A1) and collecting terms of like powers of x,
one obtains

n(n−1) (n−2) (n−3)An + a(n−2) (n−3)An−2

+ [b(n−3) (n−4)+ c(n−3)]An−3 + eAn−4 =0. (A8)

One writes this relation as

An = f1n An−2 + f2n An−3 + f3n An−4, (A9a)

where

f1n =−a/n(n−1), f2n =−[b(n−3) (n−4)+ c(n−3)]/n(n−1) (n−2) (n−3),

f3n =−e/n(n−1) (n−2) (n−3) (A9b–d)

In view of equation (A8), one obtains for various cases

pinned–pinned, An =Gn A1 +Hn A3, (A10a)

clamped–clamped, An =Gn A2 +Hn A3, (A10b)

where for the pinned–pinned case up to n=3

G1 =H3 =1, H1 =H2 =G2 =G3 =0, (A11a)

and for the clamped–clamped case up to n=3

G2 =H3 =1, G1 =H1 =H2 =G3 =0. (A11b)

Using (A10a) or (A10b) in (A9) one obtains

Gn = f1n Gn−2 + f2n Gn−3 + f3n Gn−4, Hn = f1n Hn−2 + f2n Hn−3 + f3n Hn−4. (A12a, b)

Using these recursive relations in equation (A6), (A7) and (A11) in conjunction with either
equations (A10a) or (A10b), one obtains a system of equations

[aij ]{Bj}= {0} (A13)

where for a pinned–pinned cylinder

B1 =A1, B2 =A3, a11 =1+ s
a

n=4

Gn , a12 =1+ s
a

n=4

Hn ,

a21 = s
a

n=4

n(n−1)Gn , a22 =6+ s
a

n=4

n(n−1)Hn , (A14a)

and for a clamped–clamped cylinder

B1 =A2, B2 =A3, a11 =1+ s
a

n=4

Gn , a12 =1+ s
a

n=4

Hn ,

a21 =2+ s
a

n=4

Gn , a22 =3+ s
a

n=4

nHn . (A14b)

For non-trivial solutions one requires

f(V)= =aij ==0. (A15)


